Journal of the Association for Information Systems


The internet of things (IoT) generally refers to the embedding of computing and communication devices in various types of physical objects (e.g., automobiles) used in people’s daily lives. This paper draws on feedback intervention theory to investigate the impact of IoT-enabled immediate feedback interventions on individual task performance. Our research context is a smart test-simulation service based on internet-of-vehicles (IoV) technology that was implemented by a large driver-training service provider in China. This system captures and analyzes data streams from onboard sensors and cameras installed in vehicles in real time and immediately provides individual students with information about errors made during simulation tests. We postulate that the focal smart service functions as a feedback intervention (FI) that can improve task performance. We also hypothesize that student training schedules moderate this effect and propose an interaction effect on student performance based on feedback timing and the number of FI cues. We collected data about students’ demographics, their training session records, and information about their simulation test(s) and/or their official driving skills field tests and used a quasi-experimental method along with propensity score matching to empirically validate our research model. Difference-in-difference analysis and multiple regression results support the significant impact of the simulation test as an FI on student performance on the official driving skills field test. Our results also supported the interaction effect between feedback timing and the number of corrective FI cues on official test performance. This paper concludes with a discussion of the theoretical contributions and practical significance of our research.





When commenting on articles, please be friendly, welcoming, respectful and abide by the AIS eLibrary Discussion Thread Code of Conduct posted here.