Communications of the Association for Information Systems


The explicit representation of context and subjectivity enables an information system to support multiple interpretations of the data it records. This is a crucial aspect of learning and innovation within scientific information systems. We present an ontology-based framework for context and subjectivity that integrates two lines of research: data provenance and ontological foundations of the Semantic Web. Data provenance provides a set of constructs for representing data history. We extend the definition of these constructs in order to describe multiple viewpoints or interpretations held within a domain. The W7 model, the Toulmin model, and the Proof Markup Language (PML) provide the Interlingua for creating multiple viewpoints of data in a machine-readable and sharable form. Example use cases in space sciences are used to demonstrate the feasibility and value of our approach.





When commenting on articles, please be friendly, welcoming, respectful and abide by the AIS eLibrary Discussion Thread Code of Conduct posted here.