Description
With a huge number of CVs available online, recruiting via the web has become an integral part of human resource management for companies. Automated text mining methods can be used to analyze large databases containing CVs. We present a topic modeling procedure consisting of five steps with the aim of identifying competences in CVs in an automated manner. Both the procedure and its exemplary application to CVs from IT experts are described in detail. The specific characteristics of CVs are considered in each step for optimal results. The exemplary application suggests that clearly interpretable topics describing fine-grained competences (e.g., Java programming, web design) can be discovered. This information can be used to rapidly assess the contents of a CV, categorize CVs and identify candidates for job offers. Furthermore, a topic-based search technique is evaluated to provide helpful decision support.
Knowledge Discovery from CVs: A Topic Modeling Procedure
With a huge number of CVs available online, recruiting via the web has become an integral part of human resource management for companies. Automated text mining methods can be used to analyze large databases containing CVs. We present a topic modeling procedure consisting of five steps with the aim of identifying competences in CVs in an automated manner. Both the procedure and its exemplary application to CVs from IT experts are described in detail. The specific characteristics of CVs are considered in each step for optimal results. The exemplary application suggests that clearly interpretable topics describing fine-grained competences (e.g., Java programming, web design) can be discovered. This information can be used to rapidly assess the contents of a CV, categorize CVs and identify candidates for job offers. Furthermore, a topic-based search technique is evaluated to provide helpful decision support.