Location

Online

Event Website

https://hicss.hawaii.edu/

Start Date

3-1-2023 12:00 AM

End Date

7-1-2023 12:00 AM

Description

The evolution of the power grid has given rise to a variety of innovations in inverter control architectures. Among these advances, a class of controllers has emerged with the aim of enabling 100\% inverter-based grids and these are known as grid-forming methods. Since these strategies are still under active development, well validated models are needed by equipment manufacturers as well as system planners and operators. In particular, a system operator may be unable to determine specifications and services that are required from grid forming devices without having the ability to represent them in a simulation environment with trusted models. A universal grid forming model that is portable across multiple simulation domains will be valuable in addressing this issue. In this paper, we develop a practical implementation of such a model that has the ability to represent four different grid-forming methods in a variety of simulation software packages while accurately capturing dynamics across from microsecond to millisecond timescales.

Share

COinS
 
Jan 3rd, 12:00 AM Jan 7th, 12:00 AM

A Universal Grid-forming Inverter Model and Simulation-based Characterization Across Timescales

Online

The evolution of the power grid has given rise to a variety of innovations in inverter control architectures. Among these advances, a class of controllers has emerged with the aim of enabling 100\% inverter-based grids and these are known as grid-forming methods. Since these strategies are still under active development, well validated models are needed by equipment manufacturers as well as system planners and operators. In particular, a system operator may be unable to determine specifications and services that are required from grid forming devices without having the ability to represent them in a simulation environment with trusted models. A universal grid forming model that is portable across multiple simulation domains will be valuable in addressing this issue. In this paper, we develop a practical implementation of such a model that has the ability to represent four different grid-forming methods in a variety of simulation software packages while accurately capturing dynamics across from microsecond to millisecond timescales.

https://aisel.aisnet.org/hicss-56/es/monitoring/4