Location

Hilton Waikoloa Village, Hawaii

Event Website

http://hicss.hawaii.edu/

Start Date

1-3-2018

End Date

1-6-2018

Description

Today, industrial maintenance is organized as an on-call business: Upon a customer’ s service request, the maintenance provider schedules a service technician to perform the demanded service at a suitable time. In this work, we address two drawbacks of this scheduling approach: First, the provider typically prioritizes service demand based on a subjective perception of urgency. Second, the pricing of technician services is inefficient, since services are priced on a time and material basis without accounting for additional service quality (e.g. shorter response time). We propose the implementation of a technician marketplace that allows customers to book technician capacity for fixed time slots. The price per time slot depends on the remaining capacity and therefore incentivizes customers to claim slots that match their objective task urgency. The approach is evaluated using a simulation study. Results show the capabilities of capacity-based pricing mechanisms to prioritize service demand according to customers’ opportunity costs.

Share

COinS
 
Jan 3rd, 12:00 AM Jan 6th, 12:00 AM

Towards a Technician Marketplace using Capacity-Based Pricing

Hilton Waikoloa Village, Hawaii

Today, industrial maintenance is organized as an on-call business: Upon a customer’ s service request, the maintenance provider schedules a service technician to perform the demanded service at a suitable time. In this work, we address two drawbacks of this scheduling approach: First, the provider typically prioritizes service demand based on a subjective perception of urgency. Second, the pricing of technician services is inefficient, since services are priced on a time and material basis without accounting for additional service quality (e.g. shorter response time). We propose the implementation of a technician marketplace that allows customers to book technician capacity for fixed time slots. The price per time slot depends on the remaining capacity and therefore incentivizes customers to claim slots that match their objective task urgency. The approach is evaluated using a simulation study. Results show the capabilities of capacity-based pricing mechanisms to prioritize service demand according to customers’ opportunity costs.

https://aisel.aisnet.org/hicss-51/da/service_analytics/7