Description

The variety of data types generated in manufacturing environments leads to a situation where data-driven approaches for analytical maintenance support no longer have to be limited to the equipment level, but rather can be extended to further perspectives. To this end, this paper examines how process mining(PM) as an approach to extract knowledge about process-related relationships can be applied to support maintenance-related objectives. Our research is carried out by using exemplary data from a manufacturing company, where we successively take different data attributes from various source systems into account and apply selected PM techniques to demonstrate their applicability. As a result, we showcase how different insights can be provided, such as the analysis of a machine's internal behavior, examination of error dependencies across multiple production steps, determination of a machine’s relevance within the equipment network or the discovery of bottlenecks regarding frequencies, cycle times and costs.

Share

COinS
 
Feb 28th, 8:00 AM

Application of Process Mining Techniques to Support Maintenance-Related Objectives

The variety of data types generated in manufacturing environments leads to a situation where data-driven approaches for analytical maintenance support no longer have to be limited to the equipment level, but rather can be extended to further perspectives. To this end, this paper examines how process mining(PM) as an approach to extract knowledge about process-related relationships can be applied to support maintenance-related objectives. Our research is carried out by using exemplary data from a manufacturing company, where we successively take different data attributes from various source systems into account and apply selected PM techniques to demonstrate their applicability. As a result, we showcase how different insights can be provided, such as the analysis of a machine's internal behavior, examination of error dependencies across multiple production steps, determination of a machine’s relevance within the equipment network or the discovery of bottlenecks regarding frequencies, cycle times and costs.

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.