Abstract
The paper examines the potential of a novel data mining method, the random forest classifier, to support managerial decision making in complex forecasting applications. A modelling paradigm is proposed that embraces a learning curve analysis and grid-search to analyse the model’s sensitivity towards the number of training examples and parameter settings, respectively, and, eventually, produce a final classifier with high predictive accuracy. The effectiveness of the approach is evidenced by experimental evaluation using the data of the 2008 data mining cup competition.
Recommended Citation
Schüller, Sebastian; Lessmann, Stefan; and Voß, Stefan, "A CASE STUDY OF RANDOM FOREST IN PREDICTIVE DATA MINING" (2009). Wirtschaftsinformatik Proceedings 2009. 117.
https://aisel.aisnet.org/wi2009/117