Abstract
Data plays a central role in many of today's business models. With the help of advanced analytics, knowledge about real-world phenomena can be discovered from data. This may lead to unintended
knowledge spillover through a data-driven offering. To properly consider this risk in the design of data-driven business models, suitable decision support is needed. Prior research on approaches that support
such decision-making is scarce. We frame designing business models as a set of decision problems with the lens of Behavioral Decision Theory and describe a Design Science Research project conducted in the context of an automotive company. We develop an artifact that supports identifying knowledge risks, concomitant with design decisions, during the design of data-driven business models and verify knowledge risks as a relevant problem. In further research, we explore the problem in-depth and further design and evaluate the artifact within the same company as well as in other companies.
Recommended Citation
Fruhwirth, Michael; Pammer-Schindler, Viktoria; and Thalmann, Stefan, "To Sell or Not to Sell: Knowledge Risks in Data-Driven Business Models" (2019). Proceedings of the 2019 Pre-ICIS SIGDSA Symposium. 11.
https://aisel.aisnet.org/sigdsa2019/11