Abstract
The sheer volume of user behavioral data captured on online social media provide credit agencies with unprecedented opportunities to tap into the low-cost social intelligence for conducting online credit scoring. However, traditional machine learning techniques simply cannot scale up with the large-scale social media data. The main contribution of the work reported in this paper is the development of a novel large-scale data analytics methodology that leverages readily available social media data for enhancing online credit scoring. In particular, the proposed methodology is underpinned by a parallel topic modeling method for user behavioral pattern mining. Based on real-world data crawled from Sina Weibo, our experimental results show that the proposed large-scale data analytics methodology can effectively and efficiently analyze user behavior patterns from online social media. Moreover, it outperforms traditional credit scoring methods.
Recommended Citation
Yuan, Hui; Lau, Raymond Y.K.; Xu, Wei; Pan, Zhaokang; and Wong, Michael C. S., "Mining Individuals’ Behavior Patterns from Social Media for Enhancing Online Credit Scoring" (2018). PACIS 2018 Proceedings. 163.
https://aisel.aisnet.org/pacis2018/163