•  
  •  
 

International Journal of Information Systems and Project Management

Abstract

There used to be a clear separation between tasks done by machines and tasks done by people. Applications of machine learning in speech recognition (e.g., Alexa and Siri), image recognition, automated translation, autonomous driving, and medical diagnosis, have blurred the classical divide between human tasks and machine tasks. Although current Artificial Intelligence (AI) and Machine Learning (ML) technologies outperform humans in many areas, tasks requiring common sense, contextual knowledge, creativity, adaptivity, and empathy are still best performed by humans. Hybrid Intelligence (HI) blends human intelligence and machine intelligence to combine the best of both worlds. Hence, current and future Business Process Management (BPM) initiatives need to consider HI and the changing boundaries between work done by people and work done by software robots. Consider, for example, the success of Robotic Process Automation (RPA), which demonstrates that gradually taking away repetitive tasks from workers is possible. In this viewpoint paper, we argue that process mining is a key technology to decide what to automate and what not. Moreover, using process mining, it is possible to systematically monitor and manage processes where work is distributed over human workers and software robots.

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.