International Journal of Information Systems and Project Management

Document Type



This article introduces a Bayesian learning approach for planning continuously evolving leagile project and portfolio baselines. Unlike the traditional project management approach, which uses static project baselines, the approach proposed in this study suggests learning from immediately prior experience to establish an evolving baseline for performance estimation. The principle of Pasteur’s quadrant is used to realize a highly practical solution, which extends the existing wisdom on leagile continuous planning. This study compares the accuracy of the proposed Bayesian approach with the traditional approach using real data. The results suggest that the evolving Bayesian baselines can generate a more realistic measure of performance than traditional baselines, enabling leagile projects and portfolios to be better managed in the continuously changing environments of today.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.