•  
  •  
 

International Journal of Information Systems and Project Management

Abstract

In the last few years, business firms have substantially invested into the artificial intelligence (AI) technology. However, according to several studies, a significant percentage of AI projects fail or do not deliver business value. Due to the specific characteristics of AI projects, the existing body of knowledge about success and failure of information systems (IS) projects in general may not be transferrable to the context of AI. Therefore, the objective of our research has been to identify factors that can lead to AI project failure. Based on interviews with AI experts, this article identifies and discusses 12 factors that can lead to project failure. The factors can be further classified into five categories: unrealistic expectations, use case related issues, organizational constraints, lack of key resources, and, technological issues. This research contributes to knowledge by providing new empirical data and synthesizing the results with related findings from prior studies. Our results have important managerial implications for firms that aim to adopt AI by helping the organizations to anticipate and actively manage risks in order to increase the chances of project success.

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.