Start Date
11-12-2016 12:00 AM
Description
E-mail advertisement, as one instrument in the marketing mix, allows companies to collect fine-grained behavioural data about individual users’ e-mail reading habits realised through sophisticated tracking mechanisms. Such tracking can be harmful for user privacy and security. This problem is especially severe since e-mail tracking techniques gather data without user consent. Striving to increase privacy and security in e-mail communication, the paper makes three contributions. First, a large database of newsletter e-mails is developed. This data facilitates investigating the prevalence of e-mail tracking among 300 global enterprises from Germany, the United Kingdom and the United States. Second, countermeasures are developed for automatically identifying and blocking e-mail tracking mechanisms without impeding the user experience. The approach consists of identifying important tracking descriptors and creating a neural network-based detection model. Last, the effectiveness of the proposed approach is established by means of empirical experimentation. The results suggest a classification accuracy of 99.99%.
Recommended Citation
Bender, Benedict; Fabian, Benjamin; Lessmann, Stefan; and Haupt, Johannes, "E-Mail Tracking: Status Quo and Novel Countermeasures" (2016). ICIS 2016 Proceedings. 13.
https://aisel.aisnet.org/icis2016/ISSecurity/Presentations/13
E-Mail Tracking: Status Quo and Novel Countermeasures
E-mail advertisement, as one instrument in the marketing mix, allows companies to collect fine-grained behavioural data about individual users’ e-mail reading habits realised through sophisticated tracking mechanisms. Such tracking can be harmful for user privacy and security. This problem is especially severe since e-mail tracking techniques gather data without user consent. Striving to increase privacy and security in e-mail communication, the paper makes three contributions. First, a large database of newsletter e-mails is developed. This data facilitates investigating the prevalence of e-mail tracking among 300 global enterprises from Germany, the United Kingdom and the United States. Second, countermeasures are developed for automatically identifying and blocking e-mail tracking mechanisms without impeding the user experience. The approach consists of identifying important tracking descriptors and creating a neural network-based detection model. Last, the effectiveness of the proposed approach is established by means of empirical experimentation. The results suggest a classification accuracy of 99.99%.