Start Date
12-13-2015
Description
In this paper we demonstrate the potential of data analytics methods for location-based services. We develop a support system that enables user-based relocation of vehicles in free-floating carsharing models. In these businesses, customers can rent and leave cars anywhere within a predefined operational area. However, due to this flexibility, freefloating carsharing is prone to supply and demand imbalance. The support system detects imbalances by analyzing patterns in vehicle idle times. Alternative rental destinations are proposed to customers in exchange for a discount. Using data on 250,000 rentals in the city of Vancouver, we evaluate the relocation system through a simulation. The results show that our approach decreases the average vehicle idle time by up to 16 percent, suggesting a more balanced state of supply and demand. Employing the system results in a higher degree of vehicle utilization and leads to a substantial increase of profits for providers.
Recommended Citation
Wagner, Sebastian; Willing, Christoph; Brandt, Tobias; and Neumann, Dirk, "Data Analytics for Location-Based Services: Enabling User-Based Relocation of Carsharing Vehicles" (2015). ICIS 2015 Proceedings. 24.
https://aisel.aisnet.org/icis2015/proceedings/DecisionAnalytics/24
Data Analytics for Location-Based Services: Enabling User-Based Relocation of Carsharing Vehicles
In this paper we demonstrate the potential of data analytics methods for location-based services. We develop a support system that enables user-based relocation of vehicles in free-floating carsharing models. In these businesses, customers can rent and leave cars anywhere within a predefined operational area. However, due to this flexibility, freefloating carsharing is prone to supply and demand imbalance. The support system detects imbalances by analyzing patterns in vehicle idle times. Alternative rental destinations are proposed to customers in exchange for a discount. Using data on 250,000 rentals in the city of Vancouver, we evaluate the relocation system through a simulation. The results show that our approach decreases the average vehicle idle time by up to 16 percent, suggesting a more balanced state of supply and demand. Employing the system results in a higher degree of vehicle utilization and leads to a substantial increase of profits for providers.