Start Date
14-12-2012 12:00 AM
Description
The aim of the research is to explore the impact of cognitive biases and social networks in testing and developing software. The research will aim to address two critical areas: i) to predict defective parts of the software, ii) to determine the right person to test the defective parts of the software. Every phase in software development requires analytical problem solving skills. Moreover, using everyday life heuristics instead of laws of logic and mathematics may affect quality of the software product in an undesirable manner. The proposed research aims to understand how mind works in solving problems. People also work in teams in software development that their social interactions in solving a problem may affect the quality of the product. The proposed research also aims to model the social network structure of testers and developers to understand their impact on software quality and defect prediction performance.
Recommended Citation
Calikli, Gul; Bener, Ayse; Caglayan, Bora; and Misirli, Ayse Tosun, "Modeling Human Aspects to Enhance Software Quality Management" (2012). ICIS 2012 Proceedings. 85.
https://aisel.aisnet.org/icis2012/proceedings/ResearchInProgress/85
Modeling Human Aspects to Enhance Software Quality Management
The aim of the research is to explore the impact of cognitive biases and social networks in testing and developing software. The research will aim to address two critical areas: i) to predict defective parts of the software, ii) to determine the right person to test the defective parts of the software. Every phase in software development requires analytical problem solving skills. Moreover, using everyday life heuristics instead of laws of logic and mathematics may affect quality of the software product in an undesirable manner. The proposed research aims to understand how mind works in solving problems. People also work in teams in software development that their social interactions in solving a problem may affect the quality of the product. The proposed research also aims to model the social network structure of testers and developers to understand their impact on software quality and defect prediction performance.