Start Date
14-12-2012 12:00 AM
Description
The structural embeddedness theory posits that a company’s embeddedness in a business network impacts its competitive performance. This highlights the theoretical and practical values toward business network mining and analysis. Given the fact that latent business relationships may exist and business networks continuously evolve over time, a manual approach for the discovery and analysis of business network is ineffective. Though numerous research has been devoted to social network discovery and analysis, relatively little research is conducted on business network discovery. Guided by the design science research methodology, the main contribution of our research is the design and development of a novel probabilistic generative model for latent business relationship mining. The proposed method can effectively and efficiently discover evolving latent business networks over time. Our experimental results confirm that the proposed method outperforms the well-known vector space model based latent business relationship mining method by 28% in terms of AUC value.
Recommended Citation
Zhang, Wenping; Lau, Raymond Y. K.; Liao, Stephen S. Y.; and Kwok, Ron Chi-Wai, "A Probabilistic Generative Model for Latent Business Networks Mining" (2012). ICIS 2012 Proceedings. 5.
https://aisel.aisnet.org/icis2012/proceedings/KnowledgeManagement/5
A Probabilistic Generative Model for Latent Business Networks Mining
The structural embeddedness theory posits that a company’s embeddedness in a business network impacts its competitive performance. This highlights the theoretical and practical values toward business network mining and analysis. Given the fact that latent business relationships may exist and business networks continuously evolve over time, a manual approach for the discovery and analysis of business network is ineffective. Though numerous research has been devoted to social network discovery and analysis, relatively little research is conducted on business network discovery. Guided by the design science research methodology, the main contribution of our research is the design and development of a novel probabilistic generative model for latent business relationship mining. The proposed method can effectively and efficiently discover evolving latent business networks over time. Our experimental results confirm that the proposed method outperforms the well-known vector space model based latent business relationship mining method by 28% in terms of AUC value.