Abstract

With the technology development of natural language processing, many researchers have studied Machine Learning (ML), Deep Learning (DL), monolingual Sentiment Analysis (SA) widely. However, there is not much work on Cross-Lingual SA (CLSA), although it is beneficial when dealing with low resource languages (e.g., Tamil, Malayalam, Hindi, and Arabic). This paper surveys the main challenges and issues of CLSA based on some pre-trained language models and mentions the leading methods to cope with CLSA. In particular, we compare and analyze their pros and cons. Moreover, we summarize the valuable cross-lingual resources and point out the main problems researchers need to solve in the future.

Share

COinS