Document Type
Article
Abstract
Recent advancements in data gathering technologies have led to the rise of a large amount of data through which useful insights and ideas can be derived. These data sets are typically too large to process using traditional data processing tools and applications and thus known in the popular press as ‘big data’. It is essential to extract the hidden meanings in the available data sets by aggregating big data into knowledge, which may then positively contribute to decision making. One way to engage in data-driven strategy is to gather contextual relevant data on specific customers, products, and situations, and determine optimised offerings that are most appealing to the target customers based on sound analytics. Corporations around the world have been increasingly applying analytics, tools and technologies to capture, manage and process such data, and derive value out of the huge volumes of data generated by individuals. The detailed intelligence on consumer behaviour, user patterns and other hidden knowledge that was not possible to derive via traditional means could now be used to facilitate important business processes such as real-time control, and demand forecasting. The aim of our research is to understand and analyse the significance and impact of big data in today’s industrial environment and identify the good practices that can help us derive useful knowledge out of this wealth of information based on content analysis of 34 firms that have initiated big data analytical projects. Our descriptive and network analysis shows that the goals of a big data initiative are extensible and highlighted the importance of data representation. We also find the data analytical techniques adopted are heavily dependent on the project goals.
Recommended Citation
Chowdhury, Amit T.; Chong, Guan; Lee, Sean Z. X.; and Sharma, Ravi S., "From Big Data To Knowledge – Good Practices From Industry" (2015). ICEB 2015 Proceedings (Hong Kong, SAR China). 41.
https://aisel.aisnet.org/iceb2015/41