Document Type
Article
Abstract
Recommender systems try to recommend articles of potential interest to a user with respect to the user's individual preferences. Such recommender systems are the focus of current interest in part because of their importance for e-business. Collaborative filtering is the most promising technique in recommender systems. It provides personalized recommendations according to user's preferences. But one of the problems of Collaborative filtering is cold-start. Here, we provide a novel approach for solving this problem through the attributes of items in order to recommend articles to more people for improving e-business.
Recommended Citation
Khanzadeh, Zainab and Mahdavi, Mehrgan, "Solving Cold Start Problem in Collaborative Filtring Method of Recommender Systems" (2010). ICEB 2010 Proceedings (Shanghai, China). 66.
https://aisel.aisnet.org/iceb2010/66