Location
Online
Event Website
https://hicss.hawaii.edu/
Start Date
3-1-2023 12:00 AM
End Date
7-1-2023 12:00 AM
Description
Intensive care units (ICUs) serve patients with life-threatening conditions. The limited ICU resources cause severe economic and healthcare burdens worldwide. It is critical to conduct ICU outcome predictions at an early stage and promote efficient use of ICU resources. However, all the current prediction methods have limitations such as unsatisfactory accuracy and depending on resource-demanding laboratory tests or expert domain knowledge. In this research, we design a wavelet-transformed-based convolutional neural network, WTCNN, which only requires patients’ vital sign series and information at ICU admission for real-time ICU outcome predictions. The model is evaluated using a large real-world ICU database and outperforms state-of-art baselines on both ICU mortality and length-of-stay prediction tasks. We conduct LIME for model interpretation and prescriptive analysis. Our work provides an efficient tool for ICU outcome predictions, allowing healthcare providers to take action promptly on patients at risk and reduce the negative impacts on patient outcomes.
Recommended Citation
Jiang, Yiqun; Wang, Shaodong; Li, Qing; and Zhang, Wenli, "ICU Outcome Predictions Using Real-Time Signals with Wavelet-Transform-based Convolutional Neural Network" (2023). Hawaii International Conference on System Sciences 2023 (HICSS-56). 3.
https://aisel.aisnet.org/hicss-56/in/impacts/3
ICU Outcome Predictions Using Real-Time Signals with Wavelet-Transform-based Convolutional Neural Network
Online
Intensive care units (ICUs) serve patients with life-threatening conditions. The limited ICU resources cause severe economic and healthcare burdens worldwide. It is critical to conduct ICU outcome predictions at an early stage and promote efficient use of ICU resources. However, all the current prediction methods have limitations such as unsatisfactory accuracy and depending on resource-demanding laboratory tests or expert domain knowledge. In this research, we design a wavelet-transformed-based convolutional neural network, WTCNN, which only requires patients’ vital sign series and information at ICU admission for real-time ICU outcome predictions. The model is evaluated using a large real-world ICU database and outperforms state-of-art baselines on both ICU mortality and length-of-stay prediction tasks. We conduct LIME for model interpretation and prescriptive analysis. Our work provides an efficient tool for ICU outcome predictions, allowing healthcare providers to take action promptly on patients at risk and reduce the negative impacts on patient outcomes.
https://aisel.aisnet.org/hicss-56/in/impacts/3