Location

Online

Event Website

https://hicss.hawaii.edu/

Start Date

3-1-2023 12:00 AM

End Date

7-1-2023 12:00 AM

Description

This paper proposes a hierarchical model for determining the energy flexibility offering strategy of integrated hybrid resources (IHRs) in power distribution systems to participate in real-time energy markets. The proposed model utilizes the scalability, fast response time, and uncertainty observation of deep reinforcement learning (DRL) to overcome the scalability issue of operating numerous flexible resources and deliverability of energy flexibility to the real-time markets in the presence of the network constraints. To that end, the power distribution system is divided into multiple IHRs, where different types of flexible loads, energy storage systems, and solar plants with controllable inverters are operated through local IHR controllers, trained by deep deterministic policy gradient (DDPG) algorithm. Active power request and reactive power capacity of IHRs are then transmitted to a central flexibility controller, where a quadratic optimization model ensures the deliverability of the energy flexibility to the real-time energy market by satisfying the distribution network constraints. The proposed model is implemented on the 123-bus test power distribution system, demonstrating the capability of DRL-based hierarchical model for scalable operation of IHRs in order to offer deliverable energy flexibility to the real-time energy market.

Share

COinS
 
Jan 3rd, 12:00 AM Jan 7th, 12:00 AM

Hierarchical Flexibility Offering Strategy for Integrated Hybrid Resources in Real-time Energy Markets

Online

This paper proposes a hierarchical model for determining the energy flexibility offering strategy of integrated hybrid resources (IHRs) in power distribution systems to participate in real-time energy markets. The proposed model utilizes the scalability, fast response time, and uncertainty observation of deep reinforcement learning (DRL) to overcome the scalability issue of operating numerous flexible resources and deliverability of energy flexibility to the real-time markets in the presence of the network constraints. To that end, the power distribution system is divided into multiple IHRs, where different types of flexible loads, energy storage systems, and solar plants with controllable inverters are operated through local IHR controllers, trained by deep deterministic policy gradient (DDPG) algorithm. Active power request and reactive power capacity of IHRs are then transmitted to a central flexibility controller, where a quadratic optimization model ensures the deliverability of the energy flexibility to the real-time energy market by satisfying the distribution network constraints. The proposed model is implemented on the 123-bus test power distribution system, demonstrating the capability of DRL-based hierarchical model for scalable operation of IHRs in order to offer deliverable energy flexibility to the real-time energy market.

https://aisel.aisnet.org/hicss-56/es/markets/6