Location
Online
Event Website
https://hicss.hawaii.edu/
Start Date
3-1-2023 12:00 AM
End Date
7-1-2023 12:00 AM
Description
Current state-of-the-art artificial intelligence struggles with accurate interpretation of out-of-library (OOL) objects. One method proposed remedy is analogical reasoning (AR), which utilizes abductive reasoning to draw inferences on an unfamiliar scenario given knowledge about a similar familiar scenario. Currently, applications of visual AR gravitate toward analogy-formatted image problems rather than to computer vision data sets. The Image Recognition Through Analogical Reasoning Algorithm (IRTARA) approach described herein shows how AR can be leveraged to improve computer vision in OOL situations. IRTARA produces a word-based term frequency list that characterizes the OOL object of interest. To evaluate the quality of the results of IRTARA, both quantitative and qualitative assessments are used, including a baseline to compare the automated methods with human-generated results. Fifteen OOL objects were tested using IRTARA, which showed consistent results across all three evaluation methods on the objects that performed exceptionally well or poorly overall.
Recommended Citation
Combs, Kara; Bihl, Trevor; and Ganapathy, Subhashini, "Integration of Computer Vision with Analogical Reasoning for Characterizing Unknowns" (2023). Hawaii International Conference on System Sciences 2023 (HICSS-56). 6.
https://aisel.aisnet.org/hicss-56/da/data_text_web_mining/6
Integration of Computer Vision with Analogical Reasoning for Characterizing Unknowns
Online
Current state-of-the-art artificial intelligence struggles with accurate interpretation of out-of-library (OOL) objects. One method proposed remedy is analogical reasoning (AR), which utilizes abductive reasoning to draw inferences on an unfamiliar scenario given knowledge about a similar familiar scenario. Currently, applications of visual AR gravitate toward analogy-formatted image problems rather than to computer vision data sets. The Image Recognition Through Analogical Reasoning Algorithm (IRTARA) approach described herein shows how AR can be leveraged to improve computer vision in OOL situations. IRTARA produces a word-based term frequency list that characterizes the OOL object of interest. To evaluate the quality of the results of IRTARA, both quantitative and qualitative assessments are used, including a baseline to compare the automated methods with human-generated results. Fifteen OOL objects were tested using IRTARA, which showed consistent results across all three evaluation methods on the objects that performed exceptionally well or poorly overall.
https://aisel.aisnet.org/hicss-56/da/data_text_web_mining/6