Location

Online

Event Website

https://hicss.hawaii.edu/

Start Date

3-1-2023 12:00 AM

End Date

7-1-2023 12:00 AM

Description

Deceptive signaling has proven an effective method that can aid security analysists and deter attacks on unprotected targets by strategically revealing information to an attacker. However, recent research has shown that uncertainty in real-time information processing can have a negative impact on the effectiveness of the defense algorithm. The current research developed a new algorithm, dubbed Confusion Signaling, that aims to account for uncertainty in an abstracted insider attack scenario. The results of cognitive model simulations and a human behavioral experiment reveal interesting and unexpected reactions under uncertainty. We discuss the implications of these findings for signaling algorithms that aim to account for uncertainty using deceptive signaling for cybersecurity.

Share

COinS
 
Jan 3rd, 12:00 AM Jan 7th, 12:00 AM

Accounting for Uncertainty in Deceptive Signaling for Cybersecurity

Online

Deceptive signaling has proven an effective method that can aid security analysists and deter attacks on unprotected targets by strategically revealing information to an attacker. However, recent research has shown that uncertainty in real-time information processing can have a negative impact on the effectiveness of the defense algorithm. The current research developed a new algorithm, dubbed Confusion Signaling, that aims to account for uncertainty in an abstracted insider attack scenario. The results of cognitive model simulations and a human behavioral experiment reveal interesting and unexpected reactions under uncertainty. We discuss the implications of these findings for signaling algorithms that aim to account for uncertainty using deceptive signaling for cybersecurity.

https://aisel.aisnet.org/hicss-56/da/cyber_deception/5