Location
Online
Event Website
https://hicss.hawaii.edu/
Start Date
3-1-2023 12:00 AM
End Date
7-1-2023 12:00 AM
Description
Successful energy system planning is dependent on detailed electricity demand information. Especially in developing countries, pre-generated load profiles are often unsuitable as appliance ownership and usage vary significantly across borders, between urban and rural areas, and on household and industry levels. Synthesizing load profiles is often hindered by the inaccessibility of tools due to cost barriers, global unavailability, or required technical knowledge. As currently, no easily accessible and usable tool is available during energy system planning in rural areas of developing countries, we incorporate the open-source load profile generator RAMP into our web-based energy system simulator NESSI4Dweb+ to provide an intuitive user interface. We conduct an applicability check with self-collected data from a guesthouse in Sri Lanka, analyzing the impact of load distribution and magnitude on the economic, environmental, and reliable energy supply, that validates the artifact's relevance and ability to empower local decision-makers.
Recommended Citation
Hart, Maria C. G.; Eckhoff, Sarah; and Breitner, Michael H., "Sustainable Energy System Planning in Developing Countries: Facilitating Load Profile Generation in Energy System Simulations" (2023). Hawaii International Conference on System Sciences 2023 (HICSS-56). 6.
https://aisel.aisnet.org/hicss-56/da/analytics_for_green_is/6
Sustainable Energy System Planning in Developing Countries: Facilitating Load Profile Generation in Energy System Simulations
Online
Successful energy system planning is dependent on detailed electricity demand information. Especially in developing countries, pre-generated load profiles are often unsuitable as appliance ownership and usage vary significantly across borders, between urban and rural areas, and on household and industry levels. Synthesizing load profiles is often hindered by the inaccessibility of tools due to cost barriers, global unavailability, or required technical knowledge. As currently, no easily accessible and usable tool is available during energy system planning in rural areas of developing countries, we incorporate the open-source load profile generator RAMP into our web-based energy system simulator NESSI4Dweb+ to provide an intuitive user interface. We conduct an applicability check with self-collected data from a guesthouse in Sri Lanka, analyzing the impact of load distribution and magnitude on the economic, environmental, and reliable energy supply, that validates the artifact's relevance and ability to empower local decision-makers.
https://aisel.aisnet.org/hicss-56/da/analytics_for_green_is/6