Location
Online
Event Website
https://hicss.hawaii.edu/
Start Date
3-1-2023 12:00 AM
End Date
7-1-2023 12:00 AM
Description
As a promising platform for political discourse, social media becomes a battleground for presidential candidates as well as their supporters and opponents. Stance detection is one of the key tasks in the understanding of political discourse. However, existing methods are dominated by supervised techniques, which require labeled data. Previous work on stance detection is largely conducted at the post or user level. Despite that some studies have considered online political communities, they either only select a few communities or assume the stance coherence of these communities. Political party extraction has rarely been addressed explicitly. To address the limitations, we developed an unsupervised learning approach to political party extraction and stance detection from social media discourse. We also analyzed and compared (sub)communities with respect to their characteristics of political stances and parties. We further explored (sub)communities’ shift in political stance after the 2020 US presidential election.
Recommended Citation
Zhou, Lina; Tao, Jie; and Wang, Kanlun, "On Left and Right: Understanding the Discourse of Presidential Election in Social Media Communities" (2023). Hawaii International Conference on System Sciences 2023 (HICSS-56). 3.
https://aisel.aisnet.org/hicss-56/cl/data_science/3
On Left and Right: Understanding the Discourse of Presidential Election in Social Media Communities
Online
As a promising platform for political discourse, social media becomes a battleground for presidential candidates as well as their supporters and opponents. Stance detection is one of the key tasks in the understanding of political discourse. However, existing methods are dominated by supervised techniques, which require labeled data. Previous work on stance detection is largely conducted at the post or user level. Despite that some studies have considered online political communities, they either only select a few communities or assume the stance coherence of these communities. Political party extraction has rarely been addressed explicitly. To address the limitations, we developed an unsupervised learning approach to political party extraction and stance detection from social media discourse. We also analyzed and compared (sub)communities with respect to their characteristics of political stances and parties. We further explored (sub)communities’ shift in political stance after the 2020 US presidential election.
https://aisel.aisnet.org/hicss-56/cl/data_science/3