Location
Online
Event Website
https://hicss.hawaii.edu/
Start Date
3-1-2022 12:00 AM
End Date
7-1-2022 12:00 AM
Description
The vision of Industrie 4.0 includes the automated reduction of anomalies in flexibly combined production machine groups up to a zero-failure ideal. Algorithmic real-time detection of production anomalies may build the basis for machine self-diagnosis and self-repair during production. Several real-time anomaly detection algorithms appeared in recent years. However, different algorithms applied to the same data may result in contradictory detections. Thus, real-time anomaly detection in Industrie 4.0 machine groups may require a benchmark ranking for algorithms to increase detection results’ reliability. This paper makes a qualitative research contribution based on ten expert interviews to find design principles for such a benchmark ranking. The experts were interviewed on three categories, namely timeliness, thresholds and qualitative classification. The study’s results can be used as groundwork for a prototypical implementation of a benchmark.
Towards Design Principles for a Real-Time Anomaly Detection Algorithm Benchmark Suited to Industrie 4.0 Streaming Data
Online
The vision of Industrie 4.0 includes the automated reduction of anomalies in flexibly combined production machine groups up to a zero-failure ideal. Algorithmic real-time detection of production anomalies may build the basis for machine self-diagnosis and self-repair during production. Several real-time anomaly detection algorithms appeared in recent years. However, different algorithms applied to the same data may result in contradictory detections. Thus, real-time anomaly detection in Industrie 4.0 machine groups may require a benchmark ranking for algorithms to increase detection results’ reliability. This paper makes a qualitative research contribution based on ten expert interviews to find design principles for such a benchmark ranking. The experts were interviewed on three categories, namely timeliness, thresholds and qualitative classification. The study’s results can be used as groundwork for a prototypical implementation of a benchmark.
https://aisel.aisnet.org/hicss-55/os/risks/4