Location

Online

Event Website

https://hicss.hawaii.edu/

Start Date

3-1-2022 12:00 AM

End Date

7-1-2022 12:00 AM

Description

This study proposes a highly effective data analytics approach to prevent cyber fraud on automatic speaker verification systems by classifying histograms of genuine and spoofed voice recordings. Our deep learning-based lightweight architecture advances the application of fake voice detection on embedded systems. It sets a new benchmark with a balanced accuracy of 95.64% and an equal error rate of 4.43%, contributing to adopting artificial intelligence technologies in organizational systems and technologies. As fake voice-related fraud causes monetary damage and serious privacy concerns for various applications, our approach improves the security of such services, being of high practical relevance. Furthermore, the post-hoc analysis of our results reveals that our model confirms image texture analysis-related findings of prior studies and discovers further voice signal features (i.e., textural and contextual) that can advance future work in this field.

Share

COinS
 
Jan 3rd, 12:00 AM Jan 7th, 12:00 AM

High-Performance Fake Voice Detection on Automatic Speaker Verification Systems for the Prevention of Cyber Fraud with Convolutional Neural Networks

Online

This study proposes a highly effective data analytics approach to prevent cyber fraud on automatic speaker verification systems by classifying histograms of genuine and spoofed voice recordings. Our deep learning-based lightweight architecture advances the application of fake voice detection on embedded systems. It sets a new benchmark with a balanced accuracy of 95.64% and an equal error rate of 4.43%, contributing to adopting artificial intelligence technologies in organizational systems and technologies. As fake voice-related fraud causes monetary damage and serious privacy concerns for various applications, our approach improves the security of such services, being of high practical relevance. Furthermore, the post-hoc analysis of our results reveals that our model confirms image texture analysis-related findings of prior studies and discovers further voice signal features (i.e., textural and contextual) that can advance future work in this field.

https://aisel.aisnet.org/hicss-55/os/risks/2