Location
Online
Event Website
https://hicss.hawaii.edu/
Start Date
3-1-2022 12:00 AM
End Date
7-1-2022 12:00 AM
Description
This paper outlines an architectural vision centered around the notion of interoperability to integrate grid-forming inverter-based resources in large-scale grids. With the underlying principle of interoperability guiding developments, we focus on modeling the characteristics of droop, virtual synchronous machine, and virtual oscillator controls. Emphasis is placed on these three controllers since they are leading grid-forming control candidates and are likely to be commonplace as primary-control schemes in future systems. We show that these controllers can each be considered as instantiations of a more generic model and that all these controllers exhibit similar droop-like relations between pertinent terminal variables in steady state. This commonality between controllers gives interoperability among them such that automatic synchronization, power sharing, and voltage regulation can be achieved. Simulation results validate the models and demonstrate how the steady-state droop characteristics of these control methods can be aligned with the aid of the developed modeling paradigm.
A Generic Primary-control Model for Grid-forming Inverters: Towards Interoperable Operation & Control
Online
This paper outlines an architectural vision centered around the notion of interoperability to integrate grid-forming inverter-based resources in large-scale grids. With the underlying principle of interoperability guiding developments, we focus on modeling the characteristics of droop, virtual synchronous machine, and virtual oscillator controls. Emphasis is placed on these three controllers since they are leading grid-forming control candidates and are likely to be commonplace as primary-control schemes in future systems. We show that these controllers can each be considered as instantiations of a more generic model and that all these controllers exhibit similar droop-like relations between pertinent terminal variables in steady state. This commonality between controllers gives interoperability among them such that automatic synchronization, power sharing, and voltage regulation can be achieved. Simulation results validate the models and demonstrate how the steady-state droop characteristics of these control methods can be aligned with the aid of the developed modeling paradigm.
https://aisel.aisnet.org/hicss-55/es/renewable_resources/3