Location
Online
Event Website
https://hicss.hawaii.edu/
Start Date
3-1-2022 12:00 AM
End Date
7-1-2022 12:00 AM
Description
Technological advances in electric energy system data acquisition systems, time synchronization, and cyber assets used in power system substations, distribution systems, and control centers offer new opportunities to dramatically improve the practice of monitoring, protection, control, and operation of the system. We can make the computer based new technologies smarter and more intelligent to fully automate the basic protection and control functions. The challenges posed to the system from the continuous deployment of renewable resources that are typically inverter interface resources require monitoring of the system at much higher rates and development of protection and control systems that can respond in much faster rates than for conventional systems and they are immune to the characteristics of the new system, namely reduced fault currents and suppressed negative and zero sequence components of the fault currents. We propose a new system that provides validated data at fast rates (once per cycle), protective relays that are immune to the effects of inverter interfaced generation, detect anomalies, and enable the continuous operation of relays and other functions even in the presence of hidden failures in instrumentation. This system will be able to enable the operators to meet the challenges posed by the evolving power system and provides robust solutions to the new requirements.
Breaker to Control Center Integrated Protection, Control and Operations Model
Online
Technological advances in electric energy system data acquisition systems, time synchronization, and cyber assets used in power system substations, distribution systems, and control centers offer new opportunities to dramatically improve the practice of monitoring, protection, control, and operation of the system. We can make the computer based new technologies smarter and more intelligent to fully automate the basic protection and control functions. The challenges posed to the system from the continuous deployment of renewable resources that are typically inverter interface resources require monitoring of the system at much higher rates and development of protection and control systems that can respond in much faster rates than for conventional systems and they are immune to the characteristics of the new system, namely reduced fault currents and suppressed negative and zero sequence components of the fault currents. We propose a new system that provides validated data at fast rates (once per cycle), protective relays that are immune to the effects of inverter interfaced generation, detect anomalies, and enable the continuous operation of relays and other functions even in the presence of hidden failures in instrumentation. This system will be able to enable the operators to meet the challenges posed by the evolving power system and provides robust solutions to the new requirements.
https://aisel.aisnet.org/hicss-55/es/monitoring/2