Location
Online
Event Website
https://hicss.hawaii.edu/
Start Date
3-1-2022 12:00 AM
End Date
7-1-2022 12:00 AM
Description
Observing inconsistent results in prior studies, this paper applies the elaboration likelihood model to investigate the impact of affective and cognitive cues embedded in social media messages on audience engagement during a political event. Leveraging a rich dataset in the context of the 2020 U.S. presidential elections containing more than 3 million tweets, we found the prominence of both cue types. For the overall sample, positivity and sentiment are negatively related to engagement. In contrast, the post-hoc sub-sample analysis of tweets from famous users shows that emotionally charged content is more engaging. The role of sentiment decreases when the number of followers grows and ultimately becomes insignificant for Twitter participants with a vast number of followers. Prosocial orientation (“we-talk”) is consistently associated with more likes, comments, and retweets in the overall sample and sub-samples.
Crafting Audience Engagement in Social Media Conversations: Evidence from the U.S. 2020 Presidential Elections
Online
Observing inconsistent results in prior studies, this paper applies the elaboration likelihood model to investigate the impact of affective and cognitive cues embedded in social media messages on audience engagement during a political event. Leveraging a rich dataset in the context of the 2020 U.S. presidential elections containing more than 3 million tweets, we found the prominence of both cue types. For the overall sample, positivity and sentiment are negatively related to engagement. In contrast, the post-hoc sub-sample analysis of tweets from famous users shows that emotionally charged content is more engaging. The role of sentiment decreases when the number of followers grows and ultimately becomes insignificant for Twitter participants with a vast number of followers. Prosocial orientation (“we-talk”) is consistently associated with more likes, comments, and retweets in the overall sample and sub-samples.
https://aisel.aisnet.org/hicss-55/dsm/mediated_conversation/4