Location

Online

Event Website

https://hicss.hawaii.edu/

Start Date

3-1-2022 12:00 AM

End Date

7-1-2022 12:00 AM

Description

Traditional automated video classification methods lack measures of uncertainty, meaning the network is unable to identify those cases in which its predictions are made with significant uncertainty. This leads to misclassification, as the traditional network classifies each observation with same amount of certainty, no matter what the observation is. Bayesian neural networks are a remedy to this issue by leveraging Bayesian inference to construct uncertainty measures for each prediction. Because exact Bayesian inference is typically intractable due to the large number of parameters in a neural network, Bayesian inference is approximated by utilizing dropout in a convolutional neural network. This research compared a traditional video classification neural network to its Bayesian equivalent based on performance and capabilities. The Bayesian network achieves higher accuracy than a comparable non-Bayesian video network and it further provides uncertainty measures for each classification.

Share

COinS
 
Jan 3rd, 12:00 AM Jan 7th, 12:00 AM

Bayesian Augmentation of Deep Learning to Improve Video Classification

Online

Traditional automated video classification methods lack measures of uncertainty, meaning the network is unable to identify those cases in which its predictions are made with significant uncertainty. This leads to misclassification, as the traditional network classifies each observation with same amount of certainty, no matter what the observation is. Bayesian neural networks are a remedy to this issue by leveraging Bayesian inference to construct uncertainty measures for each prediction. Because exact Bayesian inference is typically intractable due to the large number of parameters in a neural network, Bayesian inference is approximated by utilizing dropout in a convolutional neural network. This research compared a traditional video classification neural network to its Bayesian equivalent based on performance and capabilities. The Bayesian network achieves higher accuracy than a comparable non-Bayesian video network and it further provides uncertainty measures for each classification.

https://aisel.aisnet.org/hicss-55/da/soft_computing/4