Location
Online
Event Website
https://hicss.hawaii.edu/
Start Date
3-1-2022 12:00 AM
End Date
7-1-2022 12:00 AM
Description
A well-balanced language curriculum must include both explicit vocabulary learning and implicit vocabulary learning. However, most language learning applications focus on explicit instruction. Students require support with implicit vocabulary learning because they need enough context to guess and acquire new words. Traditional techniques aim to teach students enough vocabulary to comprehend the text, thus enabling them to acquire new words. Despite the wide variety of support for vocabulary learning offered by learning applications today, few offer guidance on how to select an optimal vocabulary study set. This paper proposes a novel method of student modeling with masked language modeling to detect words that are required for comprehension of a text. It explores the efficacy of using deep learning via a pre-trained masked language model to model human reading comprehension and presents a vocabulary study set generation pipeline (VSGP). Promising results show that masked language modeling can be used to model human comprehension and the pipeline produces reasonably sized vocabulary study sets that can be integrated into language learning systems.
Generating Vocabulary Sets for Implicit Language Learning using Masked Language Modeling
Online
A well-balanced language curriculum must include both explicit vocabulary learning and implicit vocabulary learning. However, most language learning applications focus on explicit instruction. Students require support with implicit vocabulary learning because they need enough context to guess and acquire new words. Traditional techniques aim to teach students enough vocabulary to comprehend the text, thus enabling them to acquire new words. Despite the wide variety of support for vocabulary learning offered by learning applications today, few offer guidance on how to select an optimal vocabulary study set. This paper proposes a novel method of student modeling with masked language modeling to detect words that are required for comprehension of a text. It explores the efficacy of using deep learning via a pre-trained masked language model to model human reading comprehension and presents a vocabulary study set generation pipeline (VSGP). Promising results show that masked language modeling can be used to model human comprehension and the pipeline produces reasonably sized vocabulary study sets that can be integrated into language learning systems.
https://aisel.aisnet.org/hicss-55/cl/text_analytics/2