Location
Online
Event Website
https://hicss.hawaii.edu/
Start Date
4-1-2021 12:00 AM
End Date
9-1-2021 12:00 AM
Description
Securing the energy delivery system (EDS) from complex, nonlinear, and evolving cyber threats requires a complex set of changing and interwoven classes of technologies, policies, relationships, and personnel. One key area in this technological milieu is assessment methodologies to compare information, gathered by a variety of means, about networked devices with publicly known possible threat information about said devices. This information is used to generate risk-based characterizations that allow for the adjudication and proper corresponding management action chains to be assigned. \color{blue}To address the current cybersecurity needs in the operational technology (OT) domain, we developed a novel relative-risk assessment framework and a software application called MEEDS that can detect exposed OT systems. This paper presents the detailed architecture of relative-risk assessment framework methodology and its integral role in the MEEDS software. The efficacy of the presented framework is demonstrated by testing with the real-world systems and vulnerabilities pertaining to the industrial control systems (ICS) in critical infrastructures.
Cybersecurity Risk Assessment Framework for Externally Exposed Energy Delivery Systems
Online
Securing the energy delivery system (EDS) from complex, nonlinear, and evolving cyber threats requires a complex set of changing and interwoven classes of technologies, policies, relationships, and personnel. One key area in this technological milieu is assessment methodologies to compare information, gathered by a variety of means, about networked devices with publicly known possible threat information about said devices. This information is used to generate risk-based characterizations that allow for the adjudication and proper corresponding management action chains to be assigned. \color{blue}To address the current cybersecurity needs in the operational technology (OT) domain, we developed a novel relative-risk assessment framework and a software application called MEEDS that can detect exposed OT systems. This paper presents the detailed architecture of relative-risk assessment framework methodology and its integral role in the MEEDS software. The efficacy of the presented framework is demonstrated by testing with the real-world systems and vulnerabilities pertaining to the industrial control systems (ICS) in critical infrastructures.
https://aisel.aisnet.org/hicss-54/st/digital_forensics/2