Location

Online

Event Website

https://hicss.hawaii.edu/

Start Date

4-1-2021 12:00 AM

End Date

9-1-2021 12:00 AM

Description

Algorithmic decision-making is rapidly evolving as a source of data-driven competitive advantage with important implications for analytical practices in multiple settings. Despite the ambitions for algorithmic and intelligent technologies, however, the requirement for quality data input to the algorithm poses a significant challenge for its actual adoption. The trend towards open data might bring additional challenges such as strategic gaming and distortion of meaning. To address this problem, we draw on a two-year long qualitative case study of a firm in international maritime trade to understand the role of uncertainty associated with open data upon the uptake of a novel algorithm. We combine an uncertainty and assemblage perspective to unpack the arrangements by which the organization configures relations of humans and machine to mitigate this problem. We highlight the phenomenon of edge cases as a key challenge for automation and propose that an assemblage of augmentation and automation allows a dynamic arrangement that support the introduction and organization of algorithmic decision-making under uncertainty.

Share

COinS
 
Jan 4th, 12:00 AM Jan 9th, 12:00 AM

Assembling Algorithmic Decision-Making under Uncertainty: The Case of 'Edge Cases' in an Open Data Environment

Online

Algorithmic decision-making is rapidly evolving as a source of data-driven competitive advantage with important implications for analytical practices in multiple settings. Despite the ambitions for algorithmic and intelligent technologies, however, the requirement for quality data input to the algorithm poses a significant challenge for its actual adoption. The trend towards open data might bring additional challenges such as strategic gaming and distortion of meaning. To address this problem, we draw on a two-year long qualitative case study of a firm in international maritime trade to understand the role of uncertainty associated with open data upon the uptake of a novel algorithm. We combine an uncertainty and assemblage perspective to unpack the arrangements by which the organization configures relations of humans and machine to mitigate this problem. We highlight the phenomenon of edge cases as a key challenge for automation and propose that an assemblage of augmentation and automation allows a dynamic arrangement that support the introduction and organization of algorithmic decision-making under uncertainty.

https://aisel.aisnet.org/hicss-54/os/org_issues_in_bi/2