Location

Online

Event Website

https://hicss.hawaii.edu/

Start Date

4-1-2021 12:00 AM

End Date

9-1-2021 12:00 AM

Description

Wearable devices to detect changes in health status are increasingly adopted by consumers, yet hospitals remain slow to assimilate these devices into clinical practice. Despite the clear benefits of capturing clinical information in acutely ill patients, such technology remains difficult to implement in emergency medicine. To improve adoption, barriers must first be removed. In our technical feasibility and acceptability trial, we studied the deployment of a wearable wireless biosensor that collects physiological data. We enrolled 44 adult patients receiving care in an emergency department observation unit. After we consented patients for participation, we applied biosensors to their chest and collected basic demographic and clinical information. We then collected biosensor data on an isolated system and measured patient experience via an exit survey. Throughout this process we documented and studied technical challenges. Overall, the technology was feasible to deploy in the emergency department observation unit and was acceptable to participants. Such technologies have tremendous future operational and clinical implications in settings ranging from emergency to home-care.

Share

COinS
 
Jan 4th, 12:00 AM Jan 9th, 12:00 AM

Deployment of a wearable biosensor system in the emergency department: a technical feasibility study

Online

Wearable devices to detect changes in health status are increasingly adopted by consumers, yet hospitals remain slow to assimilate these devices into clinical practice. Despite the clear benefits of capturing clinical information in acutely ill patients, such technology remains difficult to implement in emergency medicine. To improve adoption, barriers must first be removed. In our technical feasibility and acceptability trial, we studied the deployment of a wearable wireless biosensor that collects physiological data. We enrolled 44 adult patients receiving care in an emergency department observation unit. After we consented patients for participation, we applied biosensors to their chest and collected basic demographic and clinical information. We then collected biosensor data on an isolated system and measured patient experience via an exit survey. Throughout this process we documented and studied technical challenges. Overall, the technology was feasible to deploy in the emergency department observation unit and was acceptable to participants. Such technologies have tremendous future operational and clinical implications in settings ranging from emergency to home-care.

https://aisel.aisnet.org/hicss-54/hc/body_sensor/2