Location

Online

Event Website

https://hicss.hawaii.edu/

Start Date

4-1-2021 12:00 AM

End Date

9-1-2021 12:00 AM

Description

Corneal Ulcer, also known as keratitis, represents the most frequently appearing symptom among corneal diseases, the second leading cause of ocular morbidity worldwide. Consequences such as irreversible eyesight damage or blindness require an innovative approach that enables a distinction to be made between patterns of different ulcer stages to lower the global burden of visual disability. This paper describes a Convolutional Neural Network-based image classification approach that allows the identification of different types of Corneal Ulcers based on fluorescein staining images. With a balanced accuracy of 92.73 percent, our results set a benchmark in distinguishing between general ulcer patterns. Our proposed method is robust against light reflections and allows automated extraction of meaningful features, manifesting a strong practical and theoretical relevance. By identifying Corneal Ulcers at an early stage, we aid reduction of aggravation by preventively applying and consequently tracking the efficacy of adapted medical treatment, which contributes to IT-based healthcare.

Share

COinS
 
Jan 4th, 12:00 AM Jan 9th, 12:00 AM

High-Performance Detection of Corneal Ulceration Using Image Classification with Convolutional Neural Networks

Online

Corneal Ulcer, also known as keratitis, represents the most frequently appearing symptom among corneal diseases, the second leading cause of ocular morbidity worldwide. Consequences such as irreversible eyesight damage or blindness require an innovative approach that enables a distinction to be made between patterns of different ulcer stages to lower the global burden of visual disability. This paper describes a Convolutional Neural Network-based image classification approach that allows the identification of different types of Corneal Ulcers based on fluorescein staining images. With a balanced accuracy of 92.73 percent, our results set a benchmark in distinguishing between general ulcer patterns. Our proposed method is robust against light reflections and allows automated extraction of meaningful features, manifesting a strong practical and theoretical relevance. By identifying Corneal Ulcers at an early stage, we aid reduction of aggravation by preventively applying and consequently tracking the efficacy of adapted medical treatment, which contributes to IT-based healthcare.

https://aisel.aisnet.org/hicss-54/hc/big_data_on_healthcare_app/5