Location

Online

Event Website

https://hicss.hawaii.edu/

Start Date

4-1-2021 12:00 AM

End Date

9-1-2021 12:00 AM

Description

Determined cyber adversaries often strategize their attacks by carefully selecting high-value target machines that host insecure (e.g., unpatched) legacy software. In this paper, we propose a moving-target approach to thwart and countersurveil such adversaries, wherein live (non-decoy) enterprise software services are automatically modified to deceptively emulate vulnerable legacy versions that entice attackers. A game-theoretic framework chooses which emulated software stacks, versions, configurations, and vulnerabilities yield the best defensive payoffs and most useful threat data given a specific attack model. The results show that effective movement strategies can be computed to account for pragmatic aspects of deception, such as the utility of various intelligence-gathering actions, impact of vulnerabilities, performance costs of patch deployment, complexity of exploits, and attacker profile.

Share

COinS
 
Jan 4th, 12:00 AM Jan 9th, 12:00 AM

Software Deception Steering through Version Emulation

Online

Determined cyber adversaries often strategize their attacks by carefully selecting high-value target machines that host insecure (e.g., unpatched) legacy software. In this paper, we propose a moving-target approach to thwart and countersurveil such adversaries, wherein live (non-decoy) enterprise software services are automatically modified to deceptively emulate vulnerable legacy versions that entice attackers. A game-theoretic framework chooses which emulated software stacks, versions, configurations, and vulnerabilities yield the best defensive payoffs and most useful threat data given a specific attack model. The results show that effective movement strategies can be computed to account for pragmatic aspects of deception, such as the utility of various intelligence-gathering actions, impact of vulnerabilities, performance costs of patch deployment, complexity of exploits, and attacker profile.

https://aisel.aisnet.org/hicss-54/dg/cyber_deception/5