Location

Online

Event Website

https://hicss.hawaii.edu/

Start Date

4-1-2021 12:00 AM

End Date

9-1-2021 12:00 AM

Description

Forecasting intermittent and lumpy demand is challenging. Demand occurs only sporadically and, when it does, it can vary considerably. Forecast errors are costly, resulting in obsolescent stock or unmet demand. Methods from statistics, machine learning and deep learning have been used to predict such demand patterns. Traditional accuracy metrics are often employed to evaluate the forecasts, however these come with major drawbacks such as not taking horizontal and vertical shifts over the forecasting horizon into account, or indeed stock-keeping or opportunity costs. This results in a disadvantageous selection of methods in the context of intermittent and lumpy demand forecasts. In our study, we compare methods from statistics, machine learning and deep learning by applying a novel metric called Stock-keeping-oriented Prediction Error Costs (SPEC), which overcomes the drawbacks associated with traditional metrics. Taking the SPEC metric into account, the Croston algorithm achieves the best result, just ahead of a Long Short-Term Memory Neural Network.

Share

COinS
 
Jan 4th, 12:00 AM Jan 9th, 12:00 AM

Demand Forecasting Intermittent and Lumpy Time Series: Comparing Statistical, Machine Learning and Deep Learning Methods

Online

Forecasting intermittent and lumpy demand is challenging. Demand occurs only sporadically and, when it does, it can vary considerably. Forecast errors are costly, resulting in obsolescent stock or unmet demand. Methods from statistics, machine learning and deep learning have been used to predict such demand patterns. Traditional accuracy metrics are often employed to evaluate the forecasts, however these come with major drawbacks such as not taking horizontal and vertical shifts over the forecasting horizon into account, or indeed stock-keeping or opportunity costs. This results in a disadvantageous selection of methods in the context of intermittent and lumpy demand forecasts. In our study, we compare methods from statistics, machine learning and deep learning by applying a novel metric called Stock-keeping-oriented Prediction Error Costs (SPEC), which overcomes the drawbacks associated with traditional metrics. Taking the SPEC metric into account, the Croston algorithm achieves the best result, just ahead of a Long Short-Term Memory Neural Network.

https://aisel.aisnet.org/hicss-54/da/decision_support_for_scm/4