Location

Online

Event Website

https://hicss.hawaii.edu/

Start Date

4-1-2021 12:00 AM

End Date

9-1-2021 12:00 AM

Description

While the importance of small data has been admitted in principle, they have not been widely adopted as a necessity in current machine learning or data mining research. Most predominantly, machine learning methods were typically evaluated under a “bigger is better” presumption. The more (and the more complex) data we could pour at a method, the better we thought we were at estimating its performance. We deem this mindset detrimental to interpretability, explainability, and the sustained development of the field. For example, despite that new outlier detection methods were often inspired by small, low dimensional samples, their performance has been exclusively evaluated by large, high-dimensional datasets resembling real-world use cases. With these “big data” we miss the chance to gain insights from close looks at how exactly the algorithms perform, as we mere humans cannot really comprehend the samples. In this work, we explore in the exactly opposite direction. We run several classical anomaly detection methods against small, mindfully crafted cases on which the results can be examined in detail. In addition to better understanding of these classical algorithms, our exploration has actually led to the discovery of some novel uses of classical anomaly detection methods to our surprise.

Share

COinS
 
Jan 4th, 12:00 AM Jan 9th, 12:00 AM

How Useful are Hand-crafted Data? Making Cases for Anomaly Detection Methods

Online

While the importance of small data has been admitted in principle, they have not been widely adopted as a necessity in current machine learning or data mining research. Most predominantly, machine learning methods were typically evaluated under a “bigger is better” presumption. The more (and the more complex) data we could pour at a method, the better we thought we were at estimating its performance. We deem this mindset detrimental to interpretability, explainability, and the sustained development of the field. For example, despite that new outlier detection methods were often inspired by small, low dimensional samples, their performance has been exclusively evaluated by large, high-dimensional datasets resembling real-world use cases. With these “big data” we miss the chance to gain insights from close looks at how exactly the algorithms perform, as we mere humans cannot really comprehend the samples. In this work, we explore in the exactly opposite direction. We run several classical anomaly detection methods against small, mindfully crafted cases on which the results can be examined in detail. In addition to better understanding of these classical algorithms, our exploration has actually led to the discovery of some novel uses of classical anomaly detection methods to our surprise.

https://aisel.aisnet.org/hicss-54/da/ai_algorithms/4