Location

Online

Event Website

https://hicss.hawaii.edu/

Start Date

4-1-2021 12:00 AM

End Date

9-1-2021 12:00 AM

Description

In recent years, advances in artificial intelligence (AI) have far outpaced our ability to understand and leverage them. In no domain has this been more true than in conversational agents (CAs). Transformer-based generative language models, such as GPT-2, significantly advance CAs' ability to generate creative and relevant content. It is critical to start exploring collaboration with these CAs. In this paper, we focus on an initial step by enabling a human-augmented, AI-driven CA to contribute to a panel discussion. Key questions include training a transformer-based AI to talk like a panelist, effectively embodying the CA to interact with panel participants, and defining the operational requirements and challenges to a CA gaining acceptance from its peers. Our results highlight the benefits that varied training, equal and dynamic representation, and fluid operation can have for AI applications. While acknowledging limitations, we present a path forward to richer, more natural human-AI collaboration.

Share

COinS
 
Jan 4th, 12:00 AM Jan 9th, 12:00 AM

Hello World! I am Charlie, an Artificially Intelligent Conference Panelist

Online

In recent years, advances in artificial intelligence (AI) have far outpaced our ability to understand and leverage them. In no domain has this been more true than in conversational agents (CAs). Transformer-based generative language models, such as GPT-2, significantly advance CAs' ability to generate creative and relevant content. It is critical to start exploring collaboration with these CAs. In this paper, we focus on an initial step by enabling a human-augmented, AI-driven CA to contribute to a panel discussion. Key questions include training a transformer-based AI to talk like a panelist, effectively embodying the CA to interact with panel participants, and defining the operational requirements and challenges to a CA gaining acceptance from its peers. Our results highlight the benefits that varied training, equal and dynamic representation, and fluid operation can have for AI applications. While acknowledging limitations, we present a path forward to richer, more natural human-AI collaboration.

https://aisel.aisnet.org/hicss-54/cl/machines_as_teammates/4