Location
Grand Wailea, Hawaii
Event Website
https://hicss.hawaii.edu/
Start Date
7-1-2020 12:00 AM
End Date
10-1-2020 12:00 AM
Description
Data analytics have the potential to increase the value of data emitted from smart devices in user-centric Internet of Things environments, such as smart home, drastically. In order to allow businesses and end-consumers alike to tap into this potential, appropriate analytics architectures must be present. Current solutions in this field do not tackle all of the diverse challenges and requirements, which were identified in previous research. Specifically, personalized, extensible analytics solutions, which still offer the means to address big data problems are scarce. In this paper, we therefore present an architectural solution, which was specifically designed to address the named challenges. Furthermore, we offer insights into the prototypical implementation of the proposed concept as well as an evaluation of its performance against traditional big data architectures.
- Usage
- Downloads: 108
- Abstract Views: 47
A cloud-based Analytics-Platform for user-centric Internet of Things domains – Prototype and Performance Evaluation
Grand Wailea, Hawaii
Data analytics have the potential to increase the value of data emitted from smart devices in user-centric Internet of Things environments, such as smart home, drastically. In order to allow businesses and end-consumers alike to tap into this potential, appropriate analytics architectures must be present. Current solutions in this field do not tackle all of the diverse challenges and requirements, which were identified in previous research. Specifically, personalized, extensible analytics solutions, which still offer the means to address big data problems are scarce. In this paper, we therefore present an architectural solution, which was specifically designed to address the named challenges. Furthermore, we offer insights into the prototypical implementation of the proposed concept as well as an evaluation of its performance against traditional big data architectures.
https://aisel.aisnet.org/hicss-53/st/smart_app_development/3