Location
Grand Wailea, Hawaii
Event Website
https://hicss.hawaii.edu/
Start Date
7-1-2020 12:00 AM
End Date
10-1-2020 12:00 AM
Description
This paper presents a model that estimates the likelihood that a detected vulnerability can be exploited. The data used to produce the model was obtained by carrying out an experiment that involved exploit attempts against 1179 different machines within a cyber range. Three machine learning algorithms were tested: support vector machines, random forests and neural networks. The best results were provided by a random forest model. This model has a mean cross-validation accuracy of 98.2% and an F1 score of 0.73.
A Model for Predicting the Likelihood of Successful Exploitation
Grand Wailea, Hawaii
This paper presents a model that estimates the likelihood that a detected vulnerability can be exploited. The data used to produce the model was obtained by carrying out an experiment that involved exploit attempts against 1179 different machines within a cyber range. Three machine learning algorithms were tested: support vector machines, random forests and neural networks. The best results were provided by a random forest model. This model has a mean cross-validation accuracy of 98.2% and an F1 score of 0.73.
https://aisel.aisnet.org/hicss-53/st/cyber_threat_intelligence/2