Location
Grand Wailea, Hawaii
Event Website
https://hicss.hawaii.edu/
Start Date
7-1-2020 12:00 AM
End Date
10-1-2020 12:00 AM
Description
While diagnosing schizophrenia by physicians based on patients' history and their overall mental health is inaccurate, we report on promising results using a novel, fast and reliable machine learning approach based on electroencephalography (EEG) recordings. We show that a fine granular division of EEG spectra in combination with the Random Forest classifier allows a distinction to be made between paranoid schizophrenic (ICD-10 F20.0) and non-schizophrenic persons with a very good balanced accuracy of 96.77 percent. We evaluate our approach on EEG data from an open neurological and psychiatric repository containing 499 one-minute recordings of n=28 participants (14 paranoid schizophrenic and 14 healthy controls). Since the fact that neither diagnostic tests nor biomarkers are available yet to diagnose paranoid schizophrenia, our approach paves the way to a quick and reliable diagnosis with a high accuracy. Furthermore, interesting insights about the most predictive subbands were gained by analyzing the electroencephalographic spectrum up to 100 Hz.
Development of a machine learning based algorithm to accurately detect schizophrenia based on one-minute EEG recordings
Grand Wailea, Hawaii
While diagnosing schizophrenia by physicians based on patients' history and their overall mental health is inaccurate, we report on promising results using a novel, fast and reliable machine learning approach based on electroencephalography (EEG) recordings. We show that a fine granular division of EEG spectra in combination with the Random Forest classifier allows a distinction to be made between paranoid schizophrenic (ICD-10 F20.0) and non-schizophrenic persons with a very good balanced accuracy of 96.77 percent. We evaluate our approach on EEG data from an open neurological and psychiatric repository containing 499 one-minute recordings of n=28 participants (14 paranoid schizophrenic and 14 healthy controls). Since the fact that neither diagnostic tests nor biomarkers are available yet to diagnose paranoid schizophrenia, our approach paves the way to a quick and reliable diagnosis with a high accuracy. Furthermore, interesting insights about the most predictive subbands were gained by analyzing the electroencephalographic spectrum up to 100 Hz.
https://aisel.aisnet.org/hicss-53/hc/big_data_on_healthcare_app/2