Location
Grand Wailea, Hawaii
Event Website
https://hicss.hawaii.edu/
Start Date
7-1-2020 12:00 AM
End Date
10-1-2020 12:00 AM
Description
Inertia in power systems plays an important role in maintaining the stability and reliability of the system by counteracting changes in frequency. However, the traditional sources of synchronous generation are being displaced by renewable resources, which often have no inherent inertia. This paper investigates the impact of reduced system inertia on several aspects of the dynamic stability of power systems, such as angular stability, primary frequency response, and oscillatory modes. This study is performed on a large-scale 2000 bus synthetic Texas model by selectively replacing synchronous generators with inverter-based generation resources. This paper also compares the analysis results obtained by the above-mentioned inertia-reduction approach of renewable integration with another approach in which the inertia constant of all synchronous generators is decreased. This paper demonstrates that only reducing the inertia of all synchronous generators in a system does not provide an accurate analysis of the challenges associated with the reduced system inertia caused by renewable integration.
A Study of the Impact of Reduced Inertia in Power Systems
Grand Wailea, Hawaii
Inertia in power systems plays an important role in maintaining the stability and reliability of the system by counteracting changes in frequency. However, the traditional sources of synchronous generation are being displaced by renewable resources, which often have no inherent inertia. This paper investigates the impact of reduced system inertia on several aspects of the dynamic stability of power systems, such as angular stability, primary frequency response, and oscillatory modes. This study is performed on a large-scale 2000 bus synthetic Texas model by selectively replacing synchronous generators with inverter-based generation resources. This paper also compares the analysis results obtained by the above-mentioned inertia-reduction approach of renewable integration with another approach in which the inertia constant of all synchronous generators is decreased. This paper demonstrates that only reducing the inertia of all synchronous generators in a system does not provide an accurate analysis of the challenges associated with the reduced system inertia caused by renewable integration.
https://aisel.aisnet.org/hicss-53/es/renewable_resources/8