Location

Grand Wailea, Hawaii

Event Website

https://hicss.hawaii.edu/

Start Date

7-1-2020 12:00 AM

End Date

10-1-2020 12:00 AM

Description

Distributed Energy Resources (DER) have great potential to enhance the operation of electric power distribution systems. Previously, we explored the use of 2 Dimensional Extremum Seeking (2D-ES) control algorithms to enable model-free optimal control of DER to provide grid services to both the distribution and transmissions systems. Motivated by preliminary deployments of DER managed by 2D-ES algorithms in hardware-in-the-loop tests and in operational distribution grids, in this work, we extend the control scheme to accommodate communication delays and information loss. We propose a modification to the 2D-ES scheme to allow for the processing of batches of possibly noncontiguous objective function measurements at unknown and possibly uneven intervals. We provide a proof of the convergence of the batch 2D-ES (2D-BES) scheme when optimizing a generic convex objective function, as well as simulation results that demonstrate the suitability of the approach for substation active and reactive power target tracking.

Share

COinS
 
Jan 7th, 12:00 AM Jan 10th, 12:00 AM

Batch Measurement Extremum Seeking Control of Distributed Energy Resources to Account for Communication Delays and Information Loss

Grand Wailea, Hawaii

Distributed Energy Resources (DER) have great potential to enhance the operation of electric power distribution systems. Previously, we explored the use of 2 Dimensional Extremum Seeking (2D-ES) control algorithms to enable model-free optimal control of DER to provide grid services to both the distribution and transmissions systems. Motivated by preliminary deployments of DER managed by 2D-ES algorithms in hardware-in-the-loop tests and in operational distribution grids, in this work, we extend the control scheme to accommodate communication delays and information loss. We propose a modification to the 2D-ES scheme to allow for the processing of batches of possibly noncontiguous objective function measurements at unknown and possibly uneven intervals. We provide a proof of the convergence of the batch 2D-ES (2D-BES) scheme when optimizing a generic convex objective function, as well as simulation results that demonstrate the suitability of the approach for substation active and reactive power target tracking.

https://aisel.aisnet.org/hicss-53/es/monitoring/5