Location

Grand Wailea, Hawaii

Event Website

https://hicss.hawaii.edu/

Start Date

7-1-2020 12:00 AM

End Date

10-1-2020 12:00 AM

Description

Companies often gather a tremendous amount of data, such as browsing behavior, email activities and other contact data. This data can be the source of important competitive advantage by utilizing it in estimating a contact's purchase probability using predictive analytics. The calculated purchase probability can then be used by companies to solve different business problems, such as optimizing their sales processes. The purpose of this article is to study how machine learning can be used to perform lead scoring as a special application case of making use of purchase probability. Historical behavioral data is used as training data for the classification algorithm, and purchase moments are used to limit the behavioral data for the contacts that have purchased a product in the past. Different ways of aggregating time-series data are tested to ensure that limiting the activities for buyers does not result in model bias. The results suggest that it is possible to estimate the purchase probability of leads using supervised learning algorithms, such as random forest, and that it is possible to obtain business insights from the results using visual analytics

Share

COinS
 
Jan 7th, 12:00 AM Jan 10th, 12:00 AM

Automating lead scoring with machine learning: An experimental study

Grand Wailea, Hawaii

Companies often gather a tremendous amount of data, such as browsing behavior, email activities and other contact data. This data can be the source of important competitive advantage by utilizing it in estimating a contact's purchase probability using predictive analytics. The calculated purchase probability can then be used by companies to solve different business problems, such as optimizing their sales processes. The purpose of this article is to study how machine learning can be used to perform lead scoring as a special application case of making use of purchase probability. Historical behavioral data is used as training data for the classification algorithm, and purchase moments are used to limit the behavioral data for the contacts that have purchased a product in the past. Different ways of aggregating time-series data are tested to ensure that limiting the activities for buyers does not result in model bias. The results suggest that it is possible to estimate the purchase probability of leads using supervised learning algorithms, such as random forest, and that it is possible to obtain business insights from the results using visual analytics

https://aisel.aisnet.org/hicss-53/da/machine_learning_in_finance/5