Location
Grand Wailea, Hawaii
Event Website
https://hicss.hawaii.edu/
Start Date
7-1-2020 12:00 AM
End Date
10-1-2020 12:00 AM
Description
As the worldwide population is aging, the demands of aging-in-place are also increasing and require smarter and more connected cities to keep mobility independence of older adults. However, today’s aging built environment often poses great environmental demands to older adults’ mobility and causes their distresses. To better understand and help mitigating older adults’ distress in their daily trips, this paper proposes constructing the digital twin city (DTC) model that integrates multimodal data (i.e., physiological sensing, visual sensing) on environmental demands in urban communities, so that such environmental demands can be considered in mobility planning of older adults. Specifically, this paper examines how data acquired from various modalities (i.e., electrodermal activity, gait patterns, visual sensing) can portray environmental demands associated with older adults’ mobility. In addition, it discusses the challenges and opportunities of multimodal data fusion in capturing environmental distresses in urban communities.
A Digital Twin City Model for Age-Friendly Communities: Capturing Environmental Distress from Multimodal Sensory Data
Grand Wailea, Hawaii
As the worldwide population is aging, the demands of aging-in-place are also increasing and require smarter and more connected cities to keep mobility independence of older adults. However, today’s aging built environment often poses great environmental demands to older adults’ mobility and causes their distresses. To better understand and help mitigating older adults’ distress in their daily trips, this paper proposes constructing the digital twin city (DTC) model that integrates multimodal data (i.e., physiological sensing, visual sensing) on environmental demands in urban communities, so that such environmental demands can be considered in mobility planning of older adults. Specifically, this paper examines how data acquired from various modalities (i.e., electrodermal activity, gait patterns, visual sensing) can portray environmental demands associated with older adults’ mobility. In addition, it discusses the challenges and opportunities of multimodal data fusion in capturing environmental distresses in urban communities.
https://aisel.aisnet.org/hicss-53/da/digital_twins/4