Location
Grand Wailea, Hawaii
Event Website
https://hicss.hawaii.edu/
Start Date
7-1-2020 12:00 AM
End Date
10-1-2020 12:00 AM
Description
Many modern firms and interest groups are tasked with the challenge of monitoring the status and performance of a bevy of distinct products. As online user-generated content has increased in volume, new unstructured data sources are available for mining unique insights. Reports of injuries arising as a result of product usage are particularly concerning. In this paper, we utilize complimentary approaches to address this problem. We analyze two novel datasets; first, a government-maintained dataset of hazard and injury reports and second, a large dataset of cross-industry consumer product reviews manually coded for the presence of hazard and injury reports. We apply an unsupervised topic modeling approach to characterize the hazard and injury reports detected. Then, we implement a supervised transfer learning technique, using information obtained from the government-maintained dataset to detect hazard and injury reports in online reviews. Our results offer improved surveillance for monitoring hazards across multiple industries.
Topic Modeling and Transfer Learning for Automated Surveillance of Injury Reports in Consumer Product Reviews
Grand Wailea, Hawaii
Many modern firms and interest groups are tasked with the challenge of monitoring the status and performance of a bevy of distinct products. As online user-generated content has increased in volume, new unstructured data sources are available for mining unique insights. Reports of injuries arising as a result of product usage are particularly concerning. In this paper, we utilize complimentary approaches to address this problem. We analyze two novel datasets; first, a government-maintained dataset of hazard and injury reports and second, a large dataset of cross-industry consumer product reviews manually coded for the presence of hazard and injury reports. We apply an unsupervised topic modeling approach to characterize the hazard and injury reports detected. Then, we implement a supervised transfer learning technique, using information obtained from the government-maintained dataset to detect hazard and injury reports in online reviews. Our results offer improved surveillance for monitoring hazards across multiple industries.
https://aisel.aisnet.org/hicss-53/da/data_text_web_mining/2