Location

Grand Wailea, Hawaii

Event Website

https://hicss.hawaii.edu/

Start Date

7-1-2020 12:00 AM

End Date

10-1-2020 12:00 AM

Description

Via updating Chow and Cao’s list of success factors for agile projects, attributes of potential critical success factors (CSF’s) for agile analytics projects were identified from the literature. Ten new attributes were added to Chow and Cao’s original list. Seven new attributes from the general agile project literature address: risk appetite, team diversity and availability, engagement, project planning, shared goals, and methods uncertainty. Three attributes specific to analytics projects were added: data quality, model validation, and building customers’ trust in model solution. The potential validity of the various CSF’s and attributes was explored via data from case studies of two analytics projects that varied in deployment success. The more successful project was found to be stronger in almost all the factors than the failed project. The findings can help researchers and analytics practitioners understand the environmental conditions and project actions that can help get business value from their analytics initiatives.

Share

COinS
 
Jan 7th, 12:00 AM Jan 10th, 12:00 AM

Exploring Critical Success Factors in Agile Analytics Projects

Grand Wailea, Hawaii

Via updating Chow and Cao’s list of success factors for agile projects, attributes of potential critical success factors (CSF’s) for agile analytics projects were identified from the literature. Ten new attributes were added to Chow and Cao’s original list. Seven new attributes from the general agile project literature address: risk appetite, team diversity and availability, engagement, project planning, shared goals, and methods uncertainty. Three attributes specific to analytics projects were added: data quality, model validation, and building customers’ trust in model solution. The potential validity of the various CSF’s and attributes was explored via data from case studies of two analytics projects that varied in deployment success. The more successful project was found to be stronger in almost all the factors than the failed project. The findings can help researchers and analytics practitioners understand the environmental conditions and project actions that can help get business value from their analytics initiatives.

https://aisel.aisnet.org/hicss-53/da/big_data_and_analytics/6