Location

Grand Wailea, Hawaii

Event Website

https://hicss.hawaii.edu/

Start Date

7-1-2020 12:00 AM

End Date

10-1-2020 12:00 AM

Description

One starting point to reduce harmful greenhouse gas emissions is driving behavior. Previous studies have already shown that eco-feedback leads to reduced fuel consumption. However, less has been done to investigate how driving behavior is affected by eco-feedback. Yet, understanding driving behavior is important to target personalized recommendations towards re-duced fuel consumption. In this paper, we investigate a real-world data set from an IoT-based smart vehicle service. We first extract seven distinct factors that characterize driving behavior from data of 5,676 users. Second, we derive initial hypotheses on how eco-feedback may affect these factors. Third, we test these hypotheses with data of another 495 users receiving eco-feedback. Results suggest that eco-feedback, for instance, reduces hard acceleration maneuvers while interestingly speed is not affected. Our contribution extends the understanding of measuring driving behavior using IoT-based data. Furthermore, we contribute to a better understanding of the effect of eco-feedback on driving behavior.

Share

COinS
 
Jan 7th, 12:00 AM Jan 10th, 12:00 AM

Driving Sustainably – The Influence of IoT-based Eco-Feedback on Driving Behavior

Grand Wailea, Hawaii

One starting point to reduce harmful greenhouse gas emissions is driving behavior. Previous studies have already shown that eco-feedback leads to reduced fuel consumption. However, less has been done to investigate how driving behavior is affected by eco-feedback. Yet, understanding driving behavior is important to target personalized recommendations towards re-duced fuel consumption. In this paper, we investigate a real-world data set from an IoT-based smart vehicle service. We first extract seven distinct factors that characterize driving behavior from data of 5,676 users. Second, we derive initial hypotheses on how eco-feedback may affect these factors. Third, we test these hypotheses with data of another 495 users receiving eco-feedback. Results suggest that eco-feedback, for instance, reduces hard acceleration maneuvers while interestingly speed is not affected. Our contribution extends the understanding of measuring driving behavior using IoT-based data. Furthermore, we contribute to a better understanding of the effect of eco-feedback on driving behavior.

https://aisel.aisnet.org/hicss-53/da/analytics_for_green_is/3